# 在概率图形模型中，是派系和群集的相同？ -- graphs 领域 和 terminology 领域 和 probability-theory 领域 cs 相关 的问题

## In Probabilistic Graphical Models, are Cliques and Clusters the same?

0 ### 问题

I am learning Probabilistic Graphical Models with the help of the videos on Coursera. I am in week 4 and I see cliques being mentioned often. But the graphs being discussed are cluster graphs. So are the cliques and clusters the same?

## 回答列表

2  a clique 是一个严格定义的图形的精确部分$g =（v，e）$;

$qquad displaystyle c subseteq v text {clique} iff { {u，v } mid u，v 在c，u neq v } subseteqe e$。< / p>

A clique is a rigorously defined, exact part of a graph $G=(V,E)$;

$\qquad\displaystyle C \subseteq V \text{ is clique} \iff \{ \{u,v\} \mid u,v \in C, u \neq v \} \subseteq E$.

A cluster is more general, but also more nebulous. Here's what Wikipedia has to say:

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters).

So, a cluster also is a set of nodes that is "dense" in some sense, depending on the metric used. However, while is it always clear whether adding a note increases the size of a clique, it's not always clear from looking only at one cluster whether adding a node to it is better; the quality of a clustering is defined on the whole graph.

As the Wikipedia article shows, there are many notions of clustering. Cliques can be seen as one of them.

## 相关问题

3  MaxSAT条款可靠性的差异  ( Variance of maxsat clause satisfiability )

2  动态卡游戏算法的复杂性  ( Complexity of dynamic card game algorithm )

3  贝叶斯网络的目的是什么？  ( What is the purpose of bayesian networks )

-3  M元素随机样本同样可能...（CLRS 5.3-7）？ [关闭]  ( M element random sample being equally likely clrs 5 3 7 )

6  当我们只有上限的期望时，Chernoff绑定  ( Chernoff bound when we only have upper bound of expectation )

24  如何接近垂直棍子挑战  ( How to approach vertical sticks challenge )

2  在M / M / 1队列中，服务时间的指数分布是什么意思？  ( In an m m 1 queue what does exponential distribution of service time mean )

0  如何在设定值随机变量上实施条件概率分布  ( How to implement conditional probability distribution on set valued random varia )

33  菱形糟糕是多么的洗牌？  ( How asymptotically bad is naive shuffling )

4  在线生成统一样本  ( Online generation of uniform samples )

4  理论上了解模拟退火信息  ( Understanding simulated annealing information theoretically )

1  有多少前缀代码我们可以找到给定的概率分发？  ( How many prefix code we can find for a given distribution of probability )

1  是均匀位字符串的位xor和non_uniform位串均匀？  ( Is the bitwise xor of a uniform bit string and a non uniform bit string uniform )

0  启发式确定值f，使得概率d / f接近1/2  ( Heuristically determine a value f such that a probability d f approaches 1 2 )

1  贝叶斯网络背景下的线性放松是什么？ [关闭]  ( What is linear relaxation in the context of bayesian networks )

2  最佳赌博，以最大限度地减少预期的时间达到目​​标收益  ( Optimal wagering to minimize expected time to reach a target payoff )